Στο διαδίκτυο και στην κοινότητα των μαθηματικών επικρατεί τις τελευταίες μέρες ένας αναβρασμός καθώς πρόσφατα έγινε γνωστή μια εκπληκτική ανακάλυψη.
Μετά από 2.000 χρόνια δύο μαθήτριες λυκείου της Νέας Ορλεάνης στις ΗΠΑ, η Calcea Johnson και η Ne’Kiya Jackson, κατάφεραν να αποδείξουν το Πυθαγόρειο θεώρημα με βάση την τριγωνομετρία.
Μη ξεχάσεις να κάνεις ένα Like στη σελίδα μας στο facebook juniorsclub.gr —>ΕΔΩ
«Τι το ιδιαίτερο έχει αυτό;» θα ρωτήσετε. Λοιπόν, αυτός ο μαθηματικός γρίφος έχει «κάψει» το μυαλό εκατοντάδων ακαδημαϊκών εδώ και πολλά πολλά χρόνια.
Τα δύο κορίτσια συμμετείχαν στην εξαμηνιαία συνάντηση της Αμερικανικής Μαθηματικής Εταιρείας στη Τζόρτζια, όπου αποκάλυψαν τα ευρήματά τους στην ομάδα. Στη συνάντηση αυτή συμμετείχαν επίσης ερευνητές μαθηματικών από πολλά πανεπιστήμια των ΗΠΑ, όπως το Alabama, το Georgia, το Louisiana State, το Ohio State και το Oklahoma και τα δυο κορίτσια ήταν οι μοναδικές μαθήτριες που συμμετείχαν.
Κατά τη διάρκεια της ομιλίας τους, οι Johnson και Jackson μίλησαν για το εύρημα τους και εξήγησαν πώς ανακάλυψαν μια νέα απόδειξη για το Πυθαγόρειο θεώρημα.
Το θεώρημα και οι αποδείξεις του
Το θεώρημα 2.000 ετών έχει δείξει ότι το τετράγωνο της υποτείνουσας οποιουδήποτε ορθογωνίου τριγώνου είναι ίσο με το άθροισμα των τετραγώνων των δύο κάθετων πλευρών του. Δηλαδή α² = β² + γ².
Το θεώρημα έχει μεγάλο αριθμό αποδείξεων, πιθανότατα μεγαλύτερο από κάθε άλλο μαθηματικό θεώρημα. Οι αποδείξεις είναι ευθείες, γεωμετρικές και αλγεβρικές. Ωστόσο από τη στιγμή που η τριγωνομετρία στηρίζεται σε αυτό (για την τριγωνομετρία λαμβάνεται ως δεδομένο ότι ισχύει), έως τώρα οι μαθηματικοί πιστεύουν ότι οποιαδήποτε υποτιθέμενη απόδειξη του Πυθαγόρειου θεωρήματος που χρησιμοποιεί τριγωνομετρία αποτελεί μια λογική πλάνη, που είναι γνωστή ως κυκλικός συλλογισμός. Πρόκειται για έναν όρο που χρησιμοποιείται όταν κάποιος προσπαθεί να επικυρώσει μια ιδέα με την ίδια την ιδέα.
Τι ανακάλυψαν
Όσοι επιχείρησαν να αποδείξουν αυτό το θεώρημα με βάση την τριγωνομετρία απέτυχαν γιατί θεώρησαν ότι οποιαδήποτε απόδειξη θα έπρεπε να είναι η κυκλική. Οι δύο μαθήτριες εξήγησαν ότι κάτι τέτοιο δεν ισχύει. Συγκεκριμένα, είπαν: «Στη διάλεξή μας παρουσιάζουμε μια νέα απόδειξη του θεωρήματος του Πυθαγόρα η οποία βασίζεται σε ένα θεμελιώδες αποτέλεσμα της τριγωνομετρίας -τον νόμο των ημιτόνων- και δείχνουμε ότι η απόδειξη είναι ανεξάρτητη από την ταυτότητα της πυθαγόρειας τριγωνομετρίας \sin^2x + \cos^2x = 1».
Τα δύο κορίτσια έχουν κερδίσει τον σεβασμό των μεγαλύτερων μαθηματικών για αυτή τους την προσπάθεια και μιλώντας σε τοπικά Μέσα Ενημέρωσης είπαν ότι ζουν ένα όνειρο και είναι απίστευτη εμπειρία να παρουσιάζουν το έργο τους σε ανθρώπους που είναι πολύ πιο έμπειροι και καταξιωμένοι.
“Χρήστος, το τελευταίο παιδί”: Ο μοναδικός μαθητής των Αρκιών έγινε ντοκιμαντέρ